
An OCR Concept for Historic Prints
Ursina Caluori and Klaus Simon
Swiss Federal Laboratories for Materials Science and Technology (EMPA); Dübendorf, Switzerland

Abstract
We present a new concept for the recognition of single characters,
the core component of every OCR-System. The recognition is or-
ganized as pattern matching with on-the-fly generated patterns
corresponding to the glyphs of a given computer font. Thereby,
the set of currently considered fonts can be chosen and exchanged
arbitrarily which allows a flexible adaption of the software to each
specific task, in particular the needs of historic prints.

Motivation
Recently, mass-digitization of historic prints has become a pop-
ular issue for libraries. For instance, in the European Digital
Library program the EU strives for renewing Europe’s printed
heritage as digitally available resources where the final challenge
is transforming digital images of scanned books into electronic
text. However, there are serious technological challenges. For
instance, on the website of IMPACT1, one of the corresponding
EU-projects, the following statement can be found:

Automated text recognition, carried out by Optical Char-
acter Recognition (OCR) engines does in many cases not
produce satisfying results for historical documents. Recog-
nition rates are poor or even useless. No commercial or
other OCR-engine is able to cope satisfactorily with the
wide range of printed materials published between the start
of the Gutenberg age in the 15th century and the start of
the industrial production of books in the middle of the 19th
century.

In absence of alternatives, the usual storage of digital scans as im-
age files turns the used scan resolution into a fundamental limiting
factor in mass-digitizations. For that reason, libraries often accept
low scan resolutions and high image compression rates, result-
ing in scans that are hard to read for humans and OCR-programs
alike. Consequently, OCR-applications for historic prints show in
many cases poor error rates, far away from the usual 1 – 2 % of
modern office applications.

However, suboptimal scan quality is only one reason for in-
sufficient OCR-results. Another reason may be the classification
concept of modern OCR-software, for instance neural networks
or support vector machines, see [3, 5, 7, 8] for a survey, which
follows the pattern recognition approach. Here we have to distin-
guish between pattern recognition and pattern matching, where
Wikipedia explains 2

Pattern recognition algorithms generally aim to pro-
vide a reasonable answer for all possible inputs and to
do fuzzy matching of inputs. This is opposed to pattern

1http://www.impact-project.eu
2cited from http://en.wikipedia.org/wiki/Pattern recognition

matching algorithms, which look for exact matches in
the input with pre-existing patterns.

In other words, modern OCR-software tries to recognize the com-
mon or average shape of a character, for example “R”, in contrast
to the specific graphical appearance of this character in a font like
Helvetica, e.g.“R”. Thereby, the “common shape” is determined
by a set of representative examples which have to be learned in a
supervised training process during the development phase of the
software. The central advantage of this concept is generality, i.e.
the concrete appearance of a character may vary in a certain range
which is, for instance, significant for the recognition of handwrit-
ings. The drawbacks are on the one hand inflexibility – exchange
of the training set requires the development of a new software –
and on the other hand principal limited recognition accuracy since
the training is related to an average.

Our concept is based on the pattern matching approach. We
compare a sample with a set of glyphs where a glyph denotes the
specific graphical shape of a character in a font. The compari-
son between the sample and a glyph results in a similarity mass,
e.g. the number of common pixels. In principal, our classification
process determines the most similar glyph related to the given
sample. The advantage of this procedure is its flexibility. The
approach works for arbitrary fonts. Therefore, the fonts currently
needed for given task can be embedded in the scan data. Further-
more, the necessary font technology is very well established, is
highly efficient and widely available as a common part of every
publishing software. On the other hand, our approach needs a
good scan quality and a sufficiently high resolution.

In chapter 2 we describe our approach in greater detail. Next,
we consider a recognition test for glyphs in order to show that our
concept is realistic. Finally, we analyze the state of our develop-
ment.

An Alternative for Glyph Recognition
A typical OCR-workflow [3, 5] starts with the scanning of

the original. The captured appearance of a scanned glyph differs
from its definition in a corresponding font description both by
systematic and stochastic reasons. Accordingly, usually a prepa-
ration step follows, including several improvements and regular-
izations of the input image. Then, every pixel is rounded to 0
(black) or 1 (white) where white stands for the background and
black means a dot belonging to some character. The next step,
called segmentation, groups adjacent dots into segments where
segments or groups of segments correspond to the captured ap-
pearance of the glyphs. Then a set of weighing functions, called
features, is applied to each segment. The features form a feature
vector which represents the segment in an n-dimensional feature
space. The core task of an OCR-system is the assignment of a fit-
ting glyph to each segment, called classification. Popular under-

Archiving 2013 Final Program and Proceedings 143

standings of classification consist in separating the feature space
into distinct regions which are in accordance with the characters
to recognize. However, there are a lot of different approaches, see
for instance [7]. Finally, the plausibility of the classification is
checked by linguistic methods.

Our Concept
There is a very simple and obvious way to carry out the clas-

sification. Assuming that the underlying text was produced with
a font F , we can compare a segment with every glyph of F and
choose the best match. Hardly surprising, the historically first
OCR-concepts were based on this procedure, well-known as pat-
tern matching. However, this requires that the font F or, more
accurately, the corresponding glyphs are known to the software.
Accordingly, OCR-projects from the seventies used fixed, spe-
cially designed fonts, for instance the famous OCR-A (1968) and
OCR-B (1972) fonts. Later, with more complex challenges like
the recognition of handwriting, the pattern matching approach be-
came unpopular in the nineties. Obviously, generality is more im-
portant for changing requirements in an office environment than
accuracy.

With this paper we wanted to motivate the renewal of pattern
matching for certain OCR-applications. Please note that the situ-
ation in mass-digitization is different from an office environment.
For instance, the layout of a newspaper is more or less stable over
a certain period of time such that the same fonts and glyphs, re-
spectively, appear on potentially tens of thousands of pages. In
other words, in a mass-digitization application it is very natural
and reasonable to adapt and prepare an OCR-software to a spe-
cific task by communicating involved fonts and font sizes to the
software.

The question now is how to realize this purpose technically.
On second thought, it seems obvious that the technology currently
used to produce such a layout3, should be able to specify fonts
and glyphs, respectively, for an OCR-software. Indeed, there is
no problem to integrate a modern font rasterization engine into
an OCR-software, enabling it to render text onto bitmaps. The
resulting glyph images are of the same kind as the scan images
and can therefore be used to carry out a pattern matching without
any further difficulties.

The integration of a rasterization engine — we use the Free
Type 2 [10] font library for C++ — enables us to do pattern match-
ing on a new level. The considered patterns are specified by
the embedded fonts in the scan job and can be generated spon-
taneously when needed at any pt-size. The high efficiency of Free
Type 2 allows the generation of many thousands of patterns in less
than a second.

Implementation
Let us now turn to the implementation aspects. The segmen-

tation is carried out in the same way for the scan image and glyph
images. Thereby, we concentrate consecutive black pixels to hor-
izontal intervals. The resulting run length encoding of segments
and patterns is both space- and time-efficient. Moreover, the pat-
tern matching is based on this interval structure. Some additional
information is maintained for every segment: The number of pix-
els and intervals, the size and coordinates of the bounding box,

3namely any kind of desktop publishing software

the coordinates of the center of gravity and so on.
A pattern is formed by segments found in its glyph image

together with additional information about its font, its character
and its pt-size. Please note that a pattern can consist of multiple
segments, like for example an “i”. For that reason, we sometimes
group segments of the scan image together. Accordingly, a sam-
ple always means a combination of one or more segments to be
classified as a character.

The pattern matching compares a sample with a pattern and
computes a similarity mass between them. In general, the sample
S and a pattern P differ in their bounding boxes. In order to find
the best superposition we compare the outlines of S and P. Let
ai be the distance from the left bounding box border of P to the
first pixel in line i. Then a1, . . . ,at forms the left outline of P. The
other outlines of P and the outlines of S are defined in a similar
way. The vertical superposition of S and P is determined by the
maximum cross correlation between their left and right outlines.
The determination of horizontal superposition is analog.

To accomplish the pattern matching we compare the pixel
lines of S with those of P. Let A and B be such a pair of lines.
Both A and B consist of lists of intervals.4 The intersection A∩B
forms a new list of intervals in the same way as the corresponding
symmetrical difference does. Let now {D1, . . . ,Dd } be the union
of all intervals of all line intersections and let {U1, . . . ,Uu } be
the analog for the symmetrical difference. Then we define our
similarity mass M(S,P) between S and P as

M(S,P) =

d
∑

i=1
(2 · |Di|)2

d
∑

i=1
(2 · |Di|)2 +

u
∑

i=1
|Ui|2

(1)

where |Di| stands for the length of Di. Please note that the com-
putation of (1) can be done in the number of intervals in S and
P.

Although a rasterization engine supports arbitrary scalings of
glyphs it is neither usual nor reasonable to tap the full potential.
Historic prints are produced in metal types which were only avail-
able in a fixed number of font sizes, for instance, 10 pt as normal
size, 9 pt for footnotes and 14 pt for titles. The desktop publish-
ing does not have this physical restriction of fixed font sizes but
it is an established typographical tradition to do so. Since we use
the same technology we adapt this tradition, i.e. the user of our
OCR-software has to specify a set of font sizes as input parame-
ter to our program. This reduces the number of necessary pattern
generations and speeds up the subsequent processes.

In principle, our classification is a search process over the
considered patterns. Therefore, the running time of our software
can be optimized in a classical algorithmic manner. However, in
order to keep our performance test in the next chapter as simple as
possible we use here only a size check to compare the bounding
boxes.

Testing the Glyph Recognition
We designed some documents each consisting of several

lines with the letter-figure-combination:

a, b, . . . , z, 0, 1, . . . , 9

4formed by consecutive dots

144 © Copyright 2013; Society for Imaging Science and Technology

lowercase uppercase

Font 300 600 300 600

Arial 98.15 98.84 98.38 97.69

Bauer Bodoni bold 96.30 97.22 98.15 98.61

Breitkopf Fraktur 97.92 98.84 98.38 98.38

Computer Modern Roman 99.07 99.07 99.07 99.07

Courier New 98.15 100 98.38 100

Courier New bold 99.77 100 98.84 100

Gill Sans 97.92 98.15 97.92 99.31

Helvetica 98.38 99.31 98.61 99.77

Myriad Pro 98.84 99.31 99.31 100

Stone Serif bold 99.54 100 97.22 99.77

Times New Roman 98.61 99.54 98.38 98.84

Times New Roman bold 98.61 98.84 99.54 99.54

Unger Fraktur 97.22 99.07 98.15 98.84

Verdana 99.31 100 99.54 99.77

Walbaum Fraktur 96.53 98.15 98.84 99.31

total 98.29 99.09 98.58 99.26

Table 1: Recognition rate (%) by font in 300 and 600 ppi

lowercase uppercase
Font Size 300 600 300 600

6 pt 94.07 96.48 96.85 97.04
7 pt 96.85 97.22 97.22 98.70
8 pt 98.15 98.52 97.41 99.07
9 pt 97.22 98.15 96.67 99.07

10 pt 97.59 99.63 98.70 99.44
11 pt 97.04 99.44 97.78 98.89
12 pt 99.07 99.63 99.44 99.81

14.4 pt 99.63 100 100 99.81
17.28 pt 100 100 99.63 99.81
20.74 pt 100 100 99.81 99.81
24.88 pt 99.81 100 99.81 99.81

27 pt 100 100 99.63 99.81

Table 2: Recognition rate (%) by font size in 300 and 600 ppi

The lines are typeset in the font sizes 6 pt, 7 pt, . . ., 12 pt, 14.4 pt,
17.28 pt, 20.74 pt, 24.88 pt and 27.0 pt. Each document was type-
set in one of the fonts: Arial, Bauer Bodoni bold, Breitkopf
Fraktur, Computer Modern Roman, Courier New, Courier New
bold, Gill Sans, Helvetica, Myriad Pro, Stone Serif bold, Times
New Roman, Times New Roman bold, Unger Fraktur, Verdana
and Walbaum Fraktur.5 For the capitals we created correspond-
ing documents. These documents are then printed with a Xerox
Phaser 7500 laser printer and scanned at 300 and 600 ppi with an
Epson Perfection V700 Photo scanner. The resulting gray scale
images are then used as input files to our software.

The recognition test was carried out with a reduced version
of our software. The search for the most similar pattern was split
into two phases. A first rough estimation uses a quick, simple size
check of bounding boxes. If the first phase found a pattern with a
similarity bigger than 90 % the search stops. Otherwise a second
search without any constraints is launched. This is a primitive ver-
sion of a branch and bound search heuristic and is typical for our
running time optimizations. The considered patterns are given by
the corresponding font family, as far as this family was available
to us. Usually a family consists of a regular, a bold, an italic and
a bold italic font such that we considered about 1000 glyphs each
in 12 different font sizes.

The recognition result was evaluated and recorded automat-
ically in form of both an ASCII-text output and a graphic vi-
sualization where correct classifications are indicated in green
and wrong ones in red, see figures 1 and 2. The set of
all input and output images can be found on our website:
http://empamedia.ethz.ch

Results
For 300 ppi we get an overall recognition rate of 98.29 % for

lowercase letters (and numbers) and 98.58 % for the capitals. For
600 ppi we get 99.09 % and 99.26 %. Table 1 contains the corre-
sponding values for each font, table 2 for each font size, respec-
tively.

The worst case is Bauer Bodoni bold with 96.30 % in lower-
case letters at 300 ppi. Possibly, this is correlated with the extreme
line thickness differences well-known for this font.

As expected, the recognition rate increases with scan resolu-
tion and font size. The very good result for large font sizes lets
us suppose that there is no principle limit for the accuracy of our
method. For the most relevant sizes around 10 pt we find that dou-
bling the resolution at least halves the error rates. Please note that
we used normal office equipment in our workflow. At the lower
end at 6 pt and 300 ppi the scan process came to its limits. The
letters began to crumble, thin lines and small details broke into
pieces or simply disappeared. Surprisingly, our algorithm still
yields a recognition rate of 94.07 % for all fonts. On the other
hand, already 8 pt leads to 98.15 % recognition rate for the same
resolution.

The observed errors can roughly be divided into two groups.
The first one is correlated with graphically very similar patterns.
In some of the fonts an “`” is identical or nearly identical to a “1”
or an “I”. Since our software only estimates the graphical simi-
larity, it could not discriminate between such cases. Nearly all

5The encoding of fraktur fonts differs a little bit from the others. Hence
some characters in the fraktur documents are different.

Archiving 2013 Final Program and Proceedings 145

Figure 1. Result for Times New Roman lowercase letters and numbers at 600 ppi

Figure 2. Result for Unger Fraktur uppercase letters at 600 ppi

146 © Copyright 2013; Society for Imaging Science and Technology

errors at higher font sizes fall into this category. The second er-
ror type is due to the size check applied to the bounding boxes.
For large differences the subsequent similarity check is left out.
This saves a lot of running time since computing the similarity
mass is much more expensive than checking the bounding boxes.
However, sometimes we pass over the correct pattern and can thus
only give a suboptimal answer. In state of the art OCR-software
both types of errors are usually detected in context-related plau-
sibility checks. Obviously, a glyph recognition cannot solve the
OCR-problem alone. However, a wrong but similar classification
is a good start for a subsequent correction.

Current State and Outlook
Our performance test shows the high potential of combin-

ing pattern matching with font technology for OCR-applications.
The concept works more or less for every considered font but, of
course, not identically for all of them. The fraktur fonts show no
significant differences to sans serif or classical antiqua fonts. For
this reason, we expect that our approach is especially useful for
the recognition of historic prints.

In this paper, we considered a very reduced implementation
in order to analyze the pure principle. Although the results so far
are quite compelling, the concept can be improved in many ways.

As mentioned above, errors often happen between graphi-
cally similar or even identical patterns. In such cases the discrim-
ination with a similarity mass is mostly guessing. It would be
more reasonable to put identical or nearly identical glyphs into an
equivalency class and replace them by a common representative.
Their discrimination should then be postponed to subsequent lin-
guistic checks. On the other hand, we frequently mix up “e” with
“c” which means that we have an overall high similarity but clear
differences in special regions. These typical differences can be
checked additionally whenever a sample is categorized as an “e”
or “c”. These kinds of special constraints are easy to implement
and improve the performance significantly.

The central aspect of our approach is the pattern matching
with on-the-fly generated patterns. Up to now, only glyph images
are used as patterns, but this does not mark the end of possibilities.
Quite the contrary, parts or modifications of glyph images can be
involved too, allowing us to handle degenerations of samples, e.g.
if the point in “i” is missing. Another nice option is the possibility
to adapt a pattern on-the-fly to the appearance of already observed
samples. If the observed distortions have a systematic form, for
instance a filter, then this filter can be applied to subsequent glyph
images in order to reduce the gap between samples and patterns.

The maximum similarity search copes with different fonts
and varying font sizes quite well. In particular, there is no su-
pervised training necessary to apply a new font. Apart from this,
some special adaptions to a given font may be useful. For in-
stance, the average coat thickness of a font has an evident influ-
ence on our similarity mass which means that the 90 %-rule in
phase 1 of the search process has to be adapted accordingly.

Our obvious application limitations are the scan quality
and/or the resolution for small font sizes. It can be expected that
with an additional algorithmic effort these limits can be improved.
An established method to increase the robustness in such cases is
the use of several independent similarity masses and majority de-
cisions.

The greatest challenge for the further development is the op-

timization of the running time. For mass-digitizations the OCR-
software has to be as fast as possible. Our branch-and-bound
heuristic describes the typical problem: Looking for the best
tradeoff between additional error caused by the search bounds and
the speed up of the software. Several algorithmic disciplines are
involved: computational geometry [1], graph exploration [4, 2, 9],
constraint programming [6] and so on. Software optimization is
always a difficult topic. However, the concept is designed for it
and hence there may be a chance for a non-trivial result.

Conclusion
The core functionality of every OCR-concept is the glyph

recognition. Based on this, we suppose that the glyph recognition
is also a main problem in OCR-applications for historic prints. In
this paper, we consider a new concept for glyph recognition real-
ized as pattern matching where the patterns are generated on-the-
fly with a font rasterization engine. The integration of modern
font technology into an OCR-software induces the same advan-
tages for the OCR-functionality as it had 20 years ago for the
publishing software, in particular the arbitrary exchange of fonts,
unlimited scaling, high efficiency and so on. Our performance
test should be understood as a first hint that the new approach per-
forms at least as well as the established concepts. However, there
is still a lot of work to do.

References
[1] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Compu-

tational Geometry: Algorithms and Applications, 3rd ed., Springer-
Verlag, Heidelberg, 2008.

[2] S. Even, Graph Algorithms, Computer Science Press, 1979.
[3] H. Bunke and P. Wang, Handbook of Character Recognition and

Document Image Analysis, World Scientific, Singapore/New Jer-
sey/London/Hong Kong, 1997.

[4] T. Hu, Combinatorial Algorithms, Addision-Wesley, 1982.
[5] M. Cheriet, N. Kharma, C. Liu and C. Suen, Character Recog-

nition Systems: A Guide for Students and Practitioners, Wiley-
Interscience, 2007.

[6] K. Marriott and P. Stuckey, Programming with Constraints, The MIT
Press, Cambridge, Massachusetts 02142, 1998.

[7] R. Duda, P. Hart and D. Stork, Pattern Classification, 2nd ed., John
Wiley, New York, 2001.

[8] S. Rice, G. Nagy and T. Nartker, Optical Character Recognition:
An Illustrated Guide to the Frontier, Kluwer Academic Publishers,
Boston, 1999.

[9] R. Tarjan, Data Structures and Network Algorithms, Society for In-
dustrial and Applied Mathematics Philadelphia, PA, 1983.

[10] Freetype 2, http://www.freetype.org.

Author Biography
Ursina Caluori studied Computer Science at ETH Zurich with spe-

cialization in computer graphics. She wrote her master’s thesis about
color management workflows in the EMPA media technology group. Af-
ter receiving her master’s degree in early 2008, she continued working at
EMPA in the field of OCR, gamut mapping and color management..

Archiving 2013 Final Program and Proceedings 147

